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Synchronization and directed percolation in coupled map lattices
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We study a synchronization mechanism, based on one-way coupling of all-or-nothing type, applied to
coupled map lattices with several different local rules. By analyzing the metric and the topological distance
between the two systems, we found two different regimes: a strong chaos phase in which the transition has a
directed percolation character and a weak chaos phase in which the synchronization transition occurs abruptly.
We are able to derive some analytical approximations for the location of the transition point and the critical
properties of the system. We propose to use the characteristics of this transition as indicators of the spatial
propagation of chaoticity.S1063-651X99)06701-X]

PACS numbg(s): 05.45.Ra, 05.70.Ln, 05.40.Fb

[. INTRODUCTION the slave;(iv) renormalize the distance so that it is always
small. The logarithmic average of the growth rate of the
Recently, the synchronization of chaotic systems has redistance gives the maximum Lyapunov exponent. For a
ceived considerable attentiph—7]. Among the many papers small distance, the leading contribution in the diverging rate
on this subject, some of them concern the behavior of spacomes from the maximum eigenvalue of the product of the
tially extended chaotic systenig8—10. :]acobian of the.evqlution function. computed along the tra-
In this paper we study the synchronization properties of€ctory. By considering more than just one vector in the tan-
two coupled map latticeEL1], when the coupling between gent space, and keeping them orthogonal, one can obtain the
them is completely asymmetric, and the synchronizatioVhole spectrum of Lyapunov exponerts]. _
mechanism is of the all-or-none kind: denoting one system as Th€ Lyapunov spectrum, however, does not describe ac-
the master and the other as the slave, either an individugurately the process of spatial propagation of chaos. We shall
map of the slave system is completely synchronized to th&lustrate th[s point by conS|_der|ng d|ffusn_/ely coupled I(_)gls—
corresponding map of the master system or it is left free. WdiC map lattices at Ulam point. By analyzing the behavior of
study the annealed version of this kind of coupling by choos{h® Lyapunov spectrum, one sees that for a small coupling
ing at random a fixed fraction of sites to be synchronized afl’® SPectrum is aimost constant and positive. When increas-
each time step, which constitutes the control parameter of th@9 the coupling between maps, both the positive part of the
synchronization transition. Lyapunov spectrum and the maximum exponent decrease.
An alternative point of view originates from the problem From a different point of view, the chaoticittand the
of the characterization of chaos in high dimensional dynamiLyapunov exponentof a single map can be defined by
cal systems. We assume a rather unusual point of view: in€ans of the “efforts” needed to synchronize the slave with
stead of considering the rate of divergence of the distancl1® master. Let us consider the following “toy” system com-
between the trajectory of a reference systéme masterand ~ Posed of two simple maps:
a perturbed ondthe slave, a procedure that leads to the

definition of the maximum Lyapunov exponent, we measure x'=1(x),
the “efforts” needed to make the slave system coalesce with (1)
the master. y'=(1-p)f(y)+pf(x),

Let us illustrate in detail this approach. The standard tech-
nique for studying the chaotic properties of such a system igvherex=x(t) is the master system anyg=y(t) is the slave
that of measuring the response of the system to a perturb&i4]; the prime denotes the value of the map at titriel .
tion. The conceptual experiment is the followin@) at a  The master system evolves freely while the slavgis sub-
certain time make a copy of the master system and slightljected to two opposed contributions: it tends to separate from
vary its statefii) let the system evolve for a small interval of the master if the mapis chaotic, but it is pushed towaras
time and(iii) measure the distance between the master anby the parametep, which represents the “strength.”

For a small difference(t) =x(t) —y(t), one has

*Electronic address: bagnoli@dma.unifi.it Z’=(1-p)f'(x)z, 2
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i.e., the synchronizgtiomz(oc)ZO] occurs forp=p.=1 yit+1:[1_rit(p)]ge(y}_1,yit,y}H)
—exp(—=\), where\ is the Lyapunov exponent of th@n-
perturbed trajectory x(t) of the master system. Thus for +ri(P)ge(Xi— 1, X Xi 1), (4)

simple maps the synchronization threshold is related to the

chaoticity of the system. We would like to extend this con-whereri(p) is a random variable which assumes the value

cept to a spatially extended system with a diffusive charactei@ne with probabilityp, and zero otherwise. In other words, at
The basic idea of our approach is to consider @yas a each time step a fractigmof maps in the slave system is set

mean-field description of a stochastic process which, witdo the same value of the corresponding map in the master

probability p, sets each individual map of the slave system tosystem.

the value of the corresponding map of the master one In vectorial notation one can write for the master system

(“pinching” ). We assume that the synchronized state is ab- 1 . .

sorbing, i.e., once a patch of the slave system is in the same XTE=G (X)) =(I+€A)F(X),

state of the master one, desynchronization can occur only at . . .

borders, without bubbling. The completely synchronizedWhereA is the discrete Laplacian

state, even if unstable, cannot be exited. A discussion about AX[;i = (8 1+ 81 o1~ 28X,
the robustness of this synchronization mechanism is deferred 4 R R
to the final section. andF(X) is a diagonal operatdf(X)|;;=f(x;) ;. For the

This method can be applied also to more exotic dynamical|aye system one has
systems, such as cellular automgtd]. For such systems the
usual chaotic indicators cannot be easily computed, but they Yt+1:§(p)G (YH+S(p)G (XY
exhibit spatial propagation of disorder. ¢ e

It is clear that forp=1 the system synchronizes in just whereS(p) is a random diagonal matrix having a fractipn
:)“ne time Stlep- :—|owever, 313 \éVe shall ShOVt\; in detﬁ”:}” r?ecof diagonal elements equal to one and all others equal to
, a critical value p=p.<1 does exist, above which the ot . S(n)— |
system synchronizes regardless of its chaoticity. This threshz—ero’s(p) [ ="}(P)dij, andS(p) =1-S(p).
old is related to a directed percolation phase transition.
On the other hand, some systems can synchronize for
=p*<p., because the propagation rate of the differences t+1_o ty t_ ot
between the master and the slave is reduced by the inactiva- 27 =S(PILGLX) = GX = 2)].
tion of the degrees of freedom due to pinching. As a trivial |t the difference field is uniformly small, i.e., for
illustration of this process, a lattice ahcoupledmaps syn-
chronizes in the long time limit for all strengtlps>p* =0.
This synchronization threshold is an indicator of the spatial Zt+1:§(p)J (xHzt
propagation of chaoticity in the system. Other information € '
come from the dynamics of the transition. _ whereJ(X) is the Jacobian of the evolution function
The sketch of this paper is as follows. In the next section
we describe precisely the model we use and introduce the IF (XY
observables, in Sec. Il the synchronization transition is ana- J.(XH=(1+€A) :
lyzed, and the connections with the directed percolation d
problem are discussed. In Sec. IV we present the phase dia-
grams for the synchronization transition for several weII-and
known maps, and finally in the last section we discuss our &F(X)‘ df(x)‘
main conclusions, including possible extensions and applica- . )
tions of the synchronization mechanism, and the relation- X |i,~ Iodx ‘xzxj
ships with other models found in the literature.

We introduce also the difference syst&@s X—Y, whose
evolution rule is

max(Z|)—0, one has

For all kinds of numerical computations there is a limit to
the precision below which two numbers become indistin-
guishable. Since this limit depends on the magnitude of the

The state of the master system at a given tinsedenoted numbers, it is very hard to control its effects. In this perspec-
asX'e[0,1]N, and a component of (a single mapis indi-  tive, we introduce a threshold on the precision, by impos-
cated asX|;=x;,i=1,... N. The dynamics is defined as  ing that if |x;—y;| <7, theny;=X; . In this way we can study

the sensitivity of the results on and eventually perform the

Il. THE STOCHASTIC SYNCHRONIZATION MECHANISM

x}“:gf(xi[l XExt ) limit 7— 0. We have checked that our asymptotic results are
independent ofr, at least forr smaller than 10°. In the
=(1-2e)f(x)+e[f(x_)+ 04 1], (3)  following, we shall neglect indicating the truncation opera-

tion for ease of notation, except when explicitly needed. Due
with periodic boundary conditions and<Qe<1/2. It can be to the precision threshold, the difference fields is set to
considered as the discretizatidgim time and spadeof a  zero if z}< T.
reaction-diffusion system, the coupling coming from the An alternative way of computing the evolution of the sys-
Laplacian operator. The dynamics of the slave system  tem, which will be useful in the following, is given by the
given by following procedure.
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(i) Consider three stacked two-dimensional lattices of size 030 ‘ T - - - T
NXT, and label one direction as spaicd €[1,N] and the
other one as tim¢, t [ 0,T]. This ensemble can be consid- (2)
ered to be composed of three layers: one that contains the
Boolean numbers; and two containing the real numbets
andy; .

(i) Fill up the r} layer with zeros and ones so that the g
probability of havingr{=1 is p; this layer will be named the
guenched field.

(i) Fill up thex? andy? rows at random; they will be the 0.10
initial conditions for theX andY lattice maps.

(iv) lterate the application&) and(4) to fill up the X and

0.20

Y layers.
In this way we define an out-of-equilibrium statistical sys- ‘ . . ‘ ‘
tem, with p as a control parameter. It is assumed the limit 98,60 0.10 0.20 0.30 0.40 0.50
N—o~ and T—e and the average over the quenched field. p
The degree of synchronization of the system at a given time
t can be measured by thmetric) distance 1.0 . . ‘ .
L2 o ]
=52 1,

whose asymptotic value for a given probabilpywill be

denoted ag(p). PosL i
We introduce also the field as

0 if Z=0

" |1 otherwise,

and the topological distance 0.0 P H T IR R |

N
1 S h P
PEN AN - o
i=1 FIG. 1. Metric distancga) and topological distancéb) for a
chain of 32000 Bernoulli mapg=1/3 anda=1.2,1.4,..,2.2
which measures the fraction of nonsynchronized sites in th&om left to right. One run of 30 000 time steps.
system. The asymptotic value of the topological distance will

be denoted ap(p). lll. THE SYNCHRONIZATION TRANSITION
We shall study the synchronization transition for the fol-
lowing mapsf(x) of the unit intervalx e [0,1]. If the maps are uncoupled€0), any value ofp greater

(i) The generalized Bernoulli shift(x) =[ax]mod1 with than zero is sufficient to synchronize the system in the long
a slopea greater than 1. The Lyapunov exponent of thetime limit, regardless of the chaoticity of the single map. For
single map is simply Ir); this is also the value of the maxi- COUPled systems, however, the chaoticity of the rfiempo-
mum Lyapunov exponent for a diffusively coupled lattice, ral chaog contributes to the spatial chaoticity of the system.
regardless of. For illustration purposes, we show in Fig. 1 the behavior

(i) The quenched random map that assumes a differerff the metric distancé(p) (left) and the topological distance
(random value for each differenk. It can be considered P(P) (right) for Bernoulli maps withe=1/3 and different
equivalent to the Bernoulli shift in the lima— o, and thus values ofa. The topological distance exhibits a sharp transi-

the map with the highest degree of chaoticity. This map idion for a<ac=2 and a smooth transition fa=a.; all
everywhere nondifferentiable. curves superimpose to a universal curve far from the transi-

(iil) The logistic mapf(x)=ax(1—x), which is chaotic tion ppint. The metriq d_istance .always exhibits a smooth
for 357 .. <a<4. transition. This scenario is generic for all kinds of maps and
(iv) The generalized tent map couplmgs,_e_xcept that some ma(m_mtably the Iog|st|c_ma)3 _

never exhibit the smooth transition of the topological dis-
1 tance in the allowed range of values of the paramater
X— _’) mod1 For the random map it is quite easy to understand the
2 origin of the universal curve: since even a small distance is
amplified in one time step to a random value, the difference
with a>1. zi is greater than 0 ifz;”*>0 on some of the neighbors

f(x)=|a

5
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space 1.2

0.8

p/m

04

time

0.0

FIG. 3. The ratiop(p)/m(p) vs p for a chain of 1000 logistic
maps,T= 3000, slopea=4, ande=1/3.

FIG. 2. An example of a wet cluster far=0.45. .
On the other hand, it may happen that for some valye of

dfor a given percolating wet clustethe dynamics in the
difference space is contracting, so that the difference figld
will eventually become less thanand thus set to zero. As an
illustration, let us consider the Bernoulli shift fer=1/3 and

only one connection on average. The problem reduces to the
computation of the expansion rate in a one-dimensional
chain of asymmetrically coupled maps, and the threshold for

(Ji—jl<1) at the previous time step, and the quenched fiel
riis equal to O.

This defines a directed site percolation probldrf] (for-
mation of a percolating cluster of “wet” sites along the time
direction, with control parameter 1 p. A site of coordinate
(i,t) is said to be wet if{(p) =(1) and it is connected at least

i i itel ™ =0 (li—j|< i e
Al et I the it () row e alpposed o be e Synchronization ia=3. N
: . This eventual contraction mechanism implies that the
connected to an external wet site. We shall denote the en-I ter of the sites f hicht=1 (the diff luste
semble of wet sites by the term “wet cluster”; an instance ofS'uster otine sites tor which; € diference clustens
a wet cluster fop=0.45 is shown in Fig. 2. Notice that the generally strictly included in the percolation cluster.

usual directed percolation probabilipf°") is given here by We classify the case in which the difference cluster al-
p(OP)—1 ways survives when the percolation cluster spans the lattice

(DP)_- (DP) . with the namestrong spatiotemporal chap®therwise we
1P p™<pc™, the wet cluster does not percolate in they ;e thayeak spatiotemporal chao®Ve shall denote with a
time direction, and the system will synchronize despite any,y the values of the parameters for which the synchroniza-

B - - t_ - .
chaoticity of the single map. The=0 sites disconnected tjon transition occurs, distinguishing the weak and strong

from the percolation cluster do not influence the synchroniases py the indew or s, respectively.

zation, since the synchronized state is locally absorbing. From the results of our numerical simulations, we think
Thus, for the random map and>0, the invariant curve is  that the following ansatz for the topological distane@)
simply the curve of the asymptotic densityp) of wet sites  pg|gs: the strong chaos transition always belongs to the di-
for the directed percolation problem. In the vicinity of the rected percolation universality class, while the weak chaos

transition,m(p) behaves as transition is always of first-order character. This statement is
equivalent to the assumption that the fraction of sites in the
m(p)~(pc—p)”, percolation cluster that do not belong to the difference clus-

ter is either vanishingstrong chaosor order 1(weak chaos

where 8=0.26(1) is the magnetic critical exponents of the in the thermodynamic limit. If noise is allowed to desynchro-

(1+1)-dimensional directed percolation problem gmg=1 nize the system, the directed percolation character is lost.
—pPP=0.460(2) for this lattice with connectivity three  This ansatz can be illustrated by plotting the ratio between
[16]. the topological distance(p) and the density of wet sites

In the generic case, one has to study what happens on tfe(P) as shown in Fig. 3 for the logistic map ard=1/3.
wet cluster. If the evolution of the system is expanding in theOne can see that this ratio maintains almost constant up to
difference space, and the wet cluster percolates in the tim@€ transition point. We have checked that this behavior
direction, then the asymptotic topological distance is greatefolds for several values of the slopend the coupling for
than zero and vanishes when the density of wet sites doeHle three maps. _ _ _
The expansion rate in the difference space depends on the It is interesting to examine the behavior of the difference
average number of connections between wet sites in the clug near the transition point. In the strong chaos phase, the
ter, an exception being the random map, which expands to ealue of the difference; for nonsynchronized sites is large,
random value regardless of the initial difference. since the synchronization is forced by the percolation mecha-
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nism. On the other hand, in the weak chaos phase, the value 32

of the differencezl for nonsynchronized sites is small on

average, even though localized bubbling of large amplitude 3.0

can be observefl7].

In the following we study numerically the phase boundary
between the strong and weak chaos for the Bernoulli shift
and the logistic and tent map, and we obtain some analytical
approximation for it. 26

IV. PHASE DIAGRAMS 24

The boundary between the weakly and strongly chaotic
phases can be defined considering the synchronization
mechanism on the critical percolation cluster, i.e., the cluster

2.2

of wet sites ap* = minp* =maxp =1—p°” . As illustrated 20— 5 o4 s
in Appendix A, the critical wet cluster is included in all
percolating wet clusters, so it can be considered to be the €
smallest percolating cluster of wet sites, and thus the one 5,
most unfavorable to the propagation of the difference, still
presenting spanning paths over which chaos can propagate.
The algorithm for the generation of the critical cluster is also 6.0 |-
described in Appendix A.
The phase diagrams for the Bernoulli shift and the tent
map are shown in Fig. 4; the logistic map never exhibits the 50 -
strongly chaotic phase. The case 1/2 is special, since the a
connectivity changes, and in this case the lattice corresponds
to that of the Domany-Kinzel moddl18], for which 1 40
_ A(DP _
p. '=0.3.
Since this boundary phase is defined on a critical perco- 3, |
lation cluster, one can assume that the average expansion
rate, given by the sum of all paths in the wet cluster, is
dominated by a single path. Let us assume that this path 20— T3 03 35
containsx vertical steps(of weight 1—2¢) andy oblique ’ ' ’ ) ’ ’
steps(of weight €). For the Bernoulli shift, all steps carry an €

expansion rata and thus one obtains for the Lyapunov mul-

tiplier . at the phase boundary FIG. 4. Percolative phase diagram for Berno(di and tent(b)

maps. The line represents a power-law fitting, as described in the
pe=artY(1—2e)eV=1 text. Average over five rungy=100, T=4000.
and thus =0.261), andv, =1.755). Theresults are consistent with
the hypothesis that the phenomenon belongs to the directed
percolation universality class, as expected.

The strong chaos transition is characterized by the ex-
panding dynamics on the percolation cluster. Thus, in gen-
eral, at the transition point the value of a nonzero difference
Z' is not small. On the contrary, the weak chaos transition is
characterized by the average vanishing zbf Up to the

(5
Indeed, the numerical data presented in Fig. 4 do support Boundary between the two regimes, the distance el

correspondence of this form. However, they are too rough t&tll Small and a linear approximation can be used. The syn-
allow the precise computation of the exponents, which at an hronization mechanism is related to the average number of
rate do not seem to always correspond to &j. inks between wet sitesg(p). Since the wetting is forced
We computed numerically the transition popit and the (c_>nc¢|e a site has br:aen wet, It c]:':\nnot be Iunvx)_etdne can
critical exponentsd and v, for the topological distance(p) ~ SMPIly consider the process for a single site, obtaining

for the Bernoulli shift and the tent map by means of thex(P)=3(1—p). . .
scaling relation By imposing that the distance should be marginally ex-

const
(1—2€)“1e*2 ’

with

a1t ar=1.

1

panding, and assuming that the difference figlds almost
ol b7 | =t ot p-pty et ] @
"t "at

that holds in the thermodynamic limN—o. Here« is an
arbitrary time scaling factor. We foungd.=0.46Q2), 8

constant, we get for the Bernoulli shift ard= 1/3

zawk(pi)=ay(1-py)=1
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and thusaj,=1/(1—-p}). 150 —
For a generic map, with positive and negative slopes, can-
cellation effects can be present. We need an indicator aboult ()
the constancy of the sign of the derivative over the interac- 125 L |
tion range of the diffusion operator. We consider the quantity
N ¢ ¢
P+ (Xi41) Z o
n=— 1 100 DU S
2 — .
-x-i/ * <* . *
which is analogous to the local Lyapunov multiplier, and é
N-1 | 1IN 075 |- 7
77:( H 77i)
1=0
0.50 . 1 . 1 . 1 . | . I

as a global indicator. For the Bernoulli map this indicator 1.0 12 14 1.6 1.8 20 22
corresponds to the sloe

Thus, for e=1/3, the condition for observing the weak
chaos synchronization transition is given in this approxima- 1.50 ‘ ‘ ‘ —

tion by
(b)

1
§773VK(F’§,)=77\7,(1—D3V)=1- 125 - i

We report in Fig. 5 the behavior of},(1—py;) as a func-
tion of the slopea for Bernoulli shift and tent maps, together
with the mean-field approximation. The discrepancies from
this approximation originate from the assumption of a uni-
formly vanishing difference field;, which is not fulfilled
even at the transition point.

Let us turn now to the metric distange For random
maps even an infinitesimally small distance is amplified in

i . | . | . | , 1 , | ,
gg?ai?ep to a random value. Thus, we have for the metric 050, 5 ia 16 is 5 55

1.00

n W*/ ( 1 _pw*)

0.75 - -

a

§(t)—<|z|>p(t), FIG. 5. The relation between the slopeand the weak chaos
and{ has the same critical behavior pf denoting a certain  synchronization thresholdy}/(1—p%) for a chain of Bernoulli
degree of universality in this synchronization transition. shift (@) and tent mapgb). Average over four runsN=400, T

We have studied the behavior of the rafi@®)/p(p) asa =8000, ande=1/3.
function of p for various values of the slope for the Ber-
noulli shift and the tent map, ane=1/3. The results, re- one of the neighboring sites has a nonzero difference, thus
ported in Fig. 6, show that for the Bernoulli shift the metric closing the cycle. Therefore, the average expansion rate at
distance is independent @f and of slopea far from the the synchronization thresholu}. is
synchronization transition. Deviations from this behavior
near the transition point vanish as the slegeecome greater e exp(2\/p;)=const, !
thana*.

For the tent map the rati¢(p)/p(p) is independent op  where\ is the Lyapunov exponent of the uncoupled map,
far for the transition but it depends on the slopavhich  and we have neglected nonexponential prefactors. In Fig. 7
determines the distribution af . Again, fora>a*, the met- we show the results of one simulation for the three maps
ric distance is almost constant frgpralso near the transition studied in the paper, with the parameters chosen so as to
point. have\ =In(2), and for Bernoulli maps with various slopes.

The casee#1/3 is more difficult to analyze, since the One can see that E?) is verified for smalle, except finite
asymmetric couplings cannot be easily mapped onto a statisize and time effects.
tical problem. However, for very smad, the expansion is
dominated by the exponential growtivith average rate.)
along the vertical link of the largest difference. A very rough
mean-field description could be the following. Let us assume We have studied the synchronization transition between
that at a certain time there is essentially only oneisitéth  two chains of diffusively coupled chaotic maps, induced by
a non-null difference; . This difference grows exponentially the inactivation of degrees of freedom in the difference space
at rateh and propagates to the neighboring sites at eate with a probabilityp. We have found that two different re-
After an average time f/the difference at siteis set to zero  gimes can be defined: the strong chaos regime for which the
by the synchronization mechanism, and after time @ily  dynamics of the transition is dominated by the directed per-

V. CONCLUSIONS
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1.2 ‘ ‘ ‘ ‘ ‘ . 10.0 ‘ ‘ ,
(a)
80 -
0.8
6.0 - .
Up 1/py,
40 - -
04
200 -
0.0 0.0, I | I | I | L | L
- 2.0 4.0 6.0 3.0 10.0 12.0
p —In(e)
12 : T . : . . 10.0 . . |
b L
R , ®) .
T 8.0 e
Py
”
08 |- /'//‘
. 6.0 - ‘/ e
C/p l/pW L /// A/‘A/ | |
- aA" -
A -
40 2 - - -
04 L --—a=26 o e
N a=3.0 /// /k,k’r-l’
—__a=34 L% ,:’ &
— a-40 [ =
200 : -
0.0 : L . | . | . | . | .
0.0 0.1 00,5 4.0 6.0 8.0 10.0 12.0
p —In(e)

FIG. 6. The dependence of the ratio between the metric distance FIG. 7. Relation between a small coupliagand the synchroni-
{(p) and the topological distangg(p) as a function ofp, for the  zation threshol}, . () The three sets correspond to the Bernoulli
Bernoulli shift(a) and tent magb) and different slopea. Average  shift with slopea=2 (starg, tent map with slop@&=2 (diamonds,
over four runs,N=100, T=1000. All curves normalized to 1 for and logistic maps witla=4 (squares For all three maps the maxi-
p=0. mum Lyapunov exponent foe=0 is A=In(2); the dashed line

corresponds to the law dj,=In(e)/[2In(2)]. (b) Bernoulli shift for
colation transition, and a weak chaos regime in which thea=2 (circle), a=3 (triangles, anda=4 (square} the dashed lines
system synchronizes in the presence of spanning paths alohgve slope I2In(a)]. Data from one simulation witihi=500 and
which the difference could in principle survive. We have T=2000.
been able to present some analytical approximation of the
transition point and its critical properties.

The character of the transition and the critical value of theequal to the corresponding degrees of freedom of the other.
parametep are proposed as indicators of spatial propagatiorExtending this mechanism to spatially extended systems, one
of chaoticity, which can complement the usual Lyapunovhas a coupling similar to ours, but with quenched disorder
description. These indicators do not rely on the existence ofthe coupling degrees of freedonWe did not perform the
a tangent space or exponential growth, so they can be appliefudy of quenched disorder in diffusively coupled maps,
to a broader class of systems, such as nondifferentiable magsce it implies longer spatial couplings in order to avoid the
or cellular automatd13], and a system presenting stable formation of walls.
chaos[19]. Another similar system was studied by Fahy and Ham-

Our approach can be considered as the annealed versiomann[20]. Their subject was an ensemble of noninteracting
of models that exhibit a synchronization transition, presentegbarticles in a chaotic potential. At fixed time intervals the
in some recent papers. First of all, let us consider the synvelocities of the particles were all set equal to a Gaussian
chronization mechanism proposed by Pecora and Cafrpll sample. If the free-fly time is small enough, all trajectories
In their numerical and experimental setup they studied theollapse into one. We performed preliminary simulations
behavior of the distance between two chaotic oscillators(not reported hejeon a modified system, in which one ref-
when part of the degrees of freedom of one of them is setrence particle followed an unperturbed trajectory, while a
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replica had its velocity set equal to that of the reference at ACKNOWLEDGMENTS

time intervalsr. Indeed, we observed a synchronization tran-  \ye thank S. Ruffo, R. Rechtman, and M. Bezzi for fruit-
sition for small enoughr. By observing the system strobo- ful discussions. Some parts of the simulations have been per-
scopically at intervalsr, we can substitute the continuous formed on the CRAY-T3E of the CINECA Center using the
dynamics with a map. In this case the timecontrols the INFM facilities (Progetto Calcolo ParalleloL.B. and P.P.

chaoticity of the map, while the synchronization mechanis hank the Dipartimento di Matematica Applicata for its kind

is similar to that of Pecora and Carroll and thus to a ospitality. Part of this work was performed during the

guenched disorder. Fahy and Hammann also checked that tl\!rv%)rkshop Complexity and Chaos™ at IS Foundation,

S - i - rino, Italy.
synchronization transition occurs if the position of the par-
ticles is set equal, instead of the velocity. APPENDIX

The synchronization mechanism studied in this paper is The generation of the critical cluster can be done in a very
quite particular, since it implies a complete collapse of theefficient way, using a modification of the invasion percola-
distance between the master and the slave. The strong chagsn algorithm [21]. The random bitr}(p) is obtained by
synchronized phase is not stable with respect to the inclusiosomparing a random numbd, whose distribution prob-
of desynchronizing effects, such as noise or nonperfect iderability is constant in the unit interval, with. If R'<p, then
tity of parameters in the master and slave systems. On the=1, otherwiser{=0.
other hand, the weak chaos transition is ruled by the expo- Let us consider a lattice with the same geometry of the
nential shrinking of difference, i.e., by negative Lyapunovpercolation one and assign to each site a random nuRjber
exponents for the difference. Thus, it is expected that thid he idea now is that of lowering (starting fromp=1) until

t_ . . .
transition is robust with respect to weak desynchronizatiorjfﬂe gl'usteré)fi_—o S|tes|, spans tht?l IattrLQeHA nlcle p:joper';ly of
effects, and does not depend on the threshol@ihe modi- the directed site percolation problefwhich is related to the

fication of the observed phenomena in the presence of noi%;OrCIng character of wetting is that, given the random

: X . umberR!, the percolation cluster fap; is included in the
will be the subject of a future work. In the present version, ! b P

o o . ercolation cluster fop, if p;>p,. Thus, one has simply to
the synchronization transition can be considered as a mathiy, jse the site with the highef on the border of the per-
ematical tool for the definition of quantities related to the

) i o colation clustefi.e., among the sites wittf=1 connected to
spatial propagation of chaoticity. The most natural SYsStemg o mert-1=0 site. with li—j|=1). This maximum value

to which this method can be applied are those presentingy phecome the new estimate pf and the percolation clus-
stable chao$19], i.e., irregular behavior in the presence of (o is enhanced to include all sites WiR> p
I>p.

negative.Lyalpun(_)v spectra. For these systems an gventual This procedure can be easily performed by keeping the
small noise is wiped out by the contracting dynamics onvalues of the sites in the border in an ordered linked list,
small scales. Similar noise-free systems are those that can bBgsuming that all sites in thie=0 row are connected to a wet
approximated by cellular automata modglSs]. site.
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