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Synchronization and directed percolation in coupled map lattices
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We study a synchronization mechanism, based on one-way coupling of all-or-nothing type, applied to
coupled map lattices with several different local rules. By analyzing the metric and the topological distance
between the two systems, we found two different regimes: a strong chaos phase in which the transition has a
directed percolation character and a weak chaos phase in which the synchronization transition occurs abruptly.
We are able to derive some analytical approximations for the location of the transition point and the critical
properties of the system. We propose to use the characteristics of this transition as indicators of the spatial
propagation of chaoticity.@S1063-651X~99!06701-X#
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I. INTRODUCTION

Recently, the synchronization of chaotic systems has
ceived considerable attention@1–7#. Among the many paper
on this subject, some of them concern the behavior of s
tially extended chaotic systems@8–10#.

In this paper we study the synchronization properties
two coupled map lattices@11#, when the coupling betwee
them is completely asymmetric, and the synchronizat
mechanism is of the all-or-none kind: denoting one system
the master and the other as the slave, either an individ
map of the slave system is completely synchronized to
corresponding map of the master system or it is left free.
study the annealed version of this kind of coupling by cho
ing at random a fixed fraction of sites to be synchronized
each time step, which constitutes the control parameter o
synchronization transition.

An alternative point of view originates from the proble
of the characterization of chaos in high dimensional dyna
cal systems. We assume a rather unusual point of view
stead of considering the rate of divergence of the dista
between the trajectory of a reference system~the master! and
a perturbed one~the slave!, a procedure that leads to th
definition of the maximum Lyapunov exponent, we meas
the ‘‘efforts’’ needed to make the slave system coalesce w
the master.

Let us illustrate in detail this approach. The standard te
nique for studying the chaotic properties of such a system
that of measuring the response of the system to a pertu
tion. The conceptual experiment is the following:~i! at a
certain time make a copy of the master system and slig
vary its state;~ii ! let the system evolve for a small interval o
time and~iii ! measure the distance between the master
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the slave;~iv! renormalize the distance so that it is alwa
small. The logarithmic average of the growth rate of t
distance gives the maximum Lyapunov exponent. Fo
small distance, the leading contribution in the diverging r
comes from the maximum eigenvalue of the product of
Jacobian of the evolution function computed along the t
jectory. By considering more than just one vector in the ta
gent space, and keeping them orthogonal, one can obtain
whole spectrum of Lyapunov exponents@12#.

The Lyapunov spectrum, however, does not describe
curately the process of spatial propagation of chaos. We s
illustrate this point by considering diffusively coupled logi
tic map lattices at Ulam point. By analyzing the behavior
the Lyapunov spectrum, one sees that for a small coup
the spectrum is almost constant and positive. When incre
ing the coupling between maps, both the positive part of
Lyapunov spectrum and the maximum exponent decreas

From a different point of view, the chaoticity~and the
Lyapunov exponent! of a single map can be defined b
means of the ‘‘efforts’’ needed to synchronize the slave w
the master. Let us consider the following ‘‘toy’’ system com
posed of two simple maps:

x85 f ~x!,
~1!

y85~12p! f ~y!1p f~x!,

wherex[x(t) is the master system andy[y(t) is the slave
@14#; the prime denotes the value of the map at timet11.
The master systemx evolves freely while the slavey is sub-
jected to two opposed contributions: it tends to separate f
the master if the mapf is chaotic, but it is pushed towardsx
by the parameterp, which represents the ‘‘strength.’’

For a small differencez(t)5x(t)2y(t), one has

z85~12p! f 8~x!z, ~2!
409 ©1999 The American Physical Society
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i.e., the synchronization@z(`)50# occurs for p>pc51
2exp(2l), wherel is the Lyapunov exponent of the~un-
perturbed! trajectory x(t) of the master system. Thus fo
simple maps the synchronization threshold is related to
chaoticity of the system. We would like to extend this co
cept to a spatially extended system with a diffusive charac

The basic idea of our approach is to consider Eq.~1! as a
mean-field description of a stochastic process which, w
probabilityp, sets each individual map of the slave system
the value of the corresponding map of the master
~‘‘pinching’’ !. We assume that the synchronized state is
sorbing, i.e., once a patch of the slave system is in the s
state of the master one, desynchronization can occur on
borders, without bubbling. The completely synchroniz
state, even if unstable, cannot be exited. A discussion a
the robustness of this synchronization mechanism is defe
to the final section.

This method can be applied also to more exotic dynam
systems, such as cellular automata@13#. For such systems th
usual chaotic indicators cannot be easily computed, but t
exhibit spatial propagation of disorder.

It is clear that forp51 the system synchronizes in ju
one time step. However, as we shall show in detail in S
III, a critical value p5pc,1 does exist, above which th
system synchronizes regardless of its chaoticity. This thre
old is related to a directed percolation phase transition.

On the other hand, some systems can synchronize fp
5p* ,pc , because the propagation rate of the differen
between the master and the slave is reduced by the inac
tion of the degrees of freedom due to pinching. As a triv
illustration of this process, a lattice ofuncoupledmaps syn-
chronizes in the long time limit for all strengthsp.p* 50.
This synchronization threshold is an indicator of the spa
propagation of chaoticity in the system. Other informati
come from the dynamics of the transition.

The sketch of this paper is as follows. In the next sect
we describe precisely the model we use and introduce
observables, in Sec. III the synchronization transition is a
lyzed, and the connections with the directed percolat
problem are discussed. In Sec. IV we present the phase
grams for the synchronization transition for several we
known maps, and finally in the last section we discuss
main conclusions, including possible extensions and appl
tions of the synchronization mechanism, and the relati
ships with other models found in the literature.

II. THE STOCHASTIC SYNCHRONIZATION MECHANISM

The state of the master system at a given timet is denoted
asXtP@0,1#N, and a component ofX ~a single map! is indi-
cated asXu i[xi ,i 51, . . . ,N. The dynamics is defined as

xi
t115ge~xi 21

t ,xi
t ,xi 11

t !

[~122e! f ~xi
t!1e@ f ~xi 21

t !1 f ~xi 21
t !#, ~3!

with periodic boundary conditions and 0<e<1/2. It can be
considered as the discretization~in time and space! of a
reaction-diffusion system, thee coupling coming from the
Laplacian operator. The dynamics of the slave systemY is
given by
e
-
r.
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t115@12r i

t~p!#ge~yi 21
t ,yi

t ,yi 11
t !

1r i
t~p!ge~xi 21

t ,xi
t ,xi 11

t !, ~4!

where r i
t(p) is a random variable which assumes the va

one with probabilityp, and zero otherwise. In other words,
each time step a fractionp of maps in the slave system is s
to the same value of the corresponding map in the ma
system.

In vectorial notation one can write for the master syste

Xt115Ge~Xt!5~ I 1eD!F~Xt!,

whereD is the discrete Laplacian

DXu i j 5~d i j 211d i j 1122d i j !xj

andF(X) is a diagonal operatorF(X)u i j 5 f (xj )d i j . For the
slave system one has

Yt115S̄t~p!Ge~Yt!1St~p!Ge~Xt!,

whereS(p) is a random diagonal matrix having a fractionp
of diagonal elements equal to one and all others equa
zero,S(p) tu i j 5r j

t (p)d i j , andS̄(p)5I 2S(p).
We introduce also the difference systemZ5X2Y, whose

evolution rule is

Zt115S̄t~p!@Ge~Xt!2Ge~Xt2Zt!#.

If the difference field is uniformly small, i.e., fo
max(uzi

tu)→0, one has

Zt115S̄t~p!Je~Xt!Zt,

whereJe(X) is the Jacobian of the evolution function

Je~Xt!5~ I 1eD!
]F~Xt!

]Xt

and

]F~X!

]X U
i j

5d i j

d f~x!

dx U
x5xj

.

For all kinds of numerical computations there is a limit
the precision below which two numbers become indist
guishable. Since this limit depends on the magnitude of
numbers, it is very hard to control its effects. In this persp
tive, we introduce a thresholdt on the precision, by impos
ing that if uxi2yi u,t, thenyi5xi . In this way we can study
the sensitivity of the results ont, and eventually perform the
limit t→0. We have checked that our asymptotic results
independent oft, at least fort smaller than 1026. In the
following, we shall neglect indicating the truncation oper
tion for ease of notation, except when explicitly needed. D
to the precision thresholdt, the difference fieldzi

t is set to
zero if zi

t,t.
An alternative way of computing the evolution of the sy

tem, which will be useful in the following, is given by th
following procedure.
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PRE 59 411SYNCHRONIZATION AND DIRECTED PERCOLATION IN . . .
~i! Consider three stacked two-dimensional lattices of s
N3T, and label one direction as spacei , i P@1,N# and the
other one as timet, tP@0,T#. This ensemble can be consid
ered to be composed of three layers: one that contains
Boolean numbersr i

t and two containing the real numbersxi
t

andyi
t .

~ii ! Fill up the r i
t layer with zeros and ones so that th

probability of havingr i
t51 is p; this layer will be named the

quenched field.
~iii ! Fill up thexi

0 andyi
0 rows at random; they will be the

initial conditions for theX andY lattice maps.
~iv! Iterate the applications~3! and~4! to fill up theX and

Y layers.
In this way we define an out-of-equilibrium statistical sy

tem, with p as a control parameter. It is assumed the lim
N→` and T→` and the average over the quenched fie
The degree of synchronization of the system at a given t
t can be measured by the~metric! distance

z t5
1

N(
i 51

N

uzi
tu,

whose asymptotic value for a given probabilityp will be
denoted asz(p).

We introduce also the fieldhi
t as

hi
t5H 0 if zi

t50

1 otherwise,

and the topological distance

r t5
1

N (
i 51

N

hi
t

which measures the fraction of nonsynchronized sites in
system. The asymptotic value of the topological distance
be denoted asr(p).

We shall study the synchronization transition for the f
lowing mapsf (x) of the unit intervalxP@0,1#.

~i! The generalized Bernoulli shiftf (x)5@ax#mod1 with
a slopea greater than 1. The Lyapunov exponent of t
single map is simply ln(a); this is also the value of the max
mum Lyapunov exponent for a diffusively coupled lattic
regardless ofe.

~ii ! The quenched random map that assumes a diffe
~random! value for each differentx. It can be considered
equivalent to the Bernoulli shift in the limita→`, and thus
the map with the highest degree of chaoticity. This map
everywhere nondifferentiable.

~iii ! The logistic mapf (x)5ax(12x), which is chaotic
for 3.57 . . .,a<4.

~iv! The generalized tent map

f ~x!5FaS 1

2
2Ux2

1

2U D Gmod1

with a.1.
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III. THE SYNCHRONIZATION TRANSITION

If the maps are uncoupled (e50), any value ofp greater
than zero is sufficient to synchronize the system in the lo
time limit, regardless of the chaoticity of the single map. F
coupled systems, however, the chaoticity of the map~tempo-
ral chaos! contributes to the spatial chaoticity of the syste

For illustration purposes, we show in Fig. 1 the behav
of the metric distancez(p) ~left! and the topological distanc
r(p) ~right! for Bernoulli maps withe51/3 and different
values ofa. The topological distance exhibits a sharp tran
tion for a,ac.2 and a smooth transition fora>ac ; all
curves superimpose to a universal curve far from the tra
tion point. The metric distance always exhibits a smoo
transition. This scenario is generic for all kinds of maps a
couplings, except that some maps~notably the logistic map!
never exhibit the smooth transition of the topological d
tance in the allowed range of values of the parametera.

For the random map it is quite easy to understand
origin of the universal curve: since even a small distance
amplified in one time step to a random value, the differen
zi

t is greater than 0 ifzj
t21.0 on some of the neighbor

FIG. 1. Metric distance~a! and topological distance~b! for a
chain of 32 000 Bernoulli mapse51/3 and a51.2,1.4,. . . ,2.2
from left to right. One run of 30 000 time steps.
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412 PRE 59FRANCO BAGNOLI, LUCIA BARONI, AND PAOLO PALMERINI
(u i 2 j u,1) at the previous time step, and the quenched fi
r i

t is equal to 0.
This defines a directed site percolation problem@15# ~for-

mation of a percolating cluster of ‘‘wet’’ sites along the tim
direction!, with control parameter 12p. A site of coordinate
( i ,t) is said to be wet ifr i

t(p)50 and it is connected at leas
to one neighboring wet siter j

t21(p)50 (u i 2 j u<1) at time
t21. All sites in the first (t50) row are supposed to b
connected to an external wet site. We shall denote the
semble of wet sites by the term ‘‘wet cluster’’; an instance
a wet cluster forp50.45 is shown in Fig. 2. Notice that th
usual directed percolation probabilityp(DP) is given here by
p(DP)512p.

If p(DP),pc
(DP) , the wet cluster does not percolate in t

time direction, and the system will synchronize despite a
chaoticity of the single map. Ther i

t50 sites disconnected
from the percolation cluster do not influence the synchro
zation, since the synchronized state is locally absorb
Thus, for the random map ande.0, the invariant curve is
simply the curve of the asymptotic densitym(p) of wet sites
for the directed percolation problem. In the vicinity of th
transition,m(p) behaves as

m~p!;~pc2p!b,

whereb.0.26(1) is the magnetic critical exponents of t
~111!-dimensional directed percolation problem andpc51
2pc

(DP).0.460(2) for this lattice with connectivity thre
@16#.

In the generic case, one has to study what happens on
wet cluster. If the evolution of the system is expanding in
difference space, and the wet cluster percolates in the
direction, then the asymptotic topological distance is grea
than zero and vanishes when the density of wet sites d
The expansion rate in the difference space depends on
average number of connections between wet sites in the c
ter, an exception being the random map, which expands
random value regardless of the initial difference.

FIG. 2. An example of a wet cluster forp50.45.
ld

n-
f

y

i-
g.

the
e
e

er
s.
he
s-
a

On the other hand, it may happen that for some value op
~for a given percolating wet cluster! the dynamics in the
difference space is contracting, so that the difference fielzi

t

will eventually become less thant and thus set to zero. As a
illustration, let us consider the Bernoulli shift fore51/3 and
only one connection on average. The problem reduces to
computation of the expansion rate in a one-dimensio
chain of asymmetrically coupled maps, and the threshold
the synchronization isa53.

This eventual contraction mechanism implies that
cluster of the sites for whichhi

t51 ~the difference cluster! is
generally strictly included in the percolation cluster.

We classify the case in which the difference cluster
ways survives when the percolation cluster spans the la
with the namestrong spatiotemporal chaos, otherwise we
have theweak spatiotemporal chaos. We shall denote with a
star the values of the parameters for which the synchron
tion transition occurs, distinguishing the weak and stro
cases by the indexw or s, respectively.

From the results of our numerical simulations, we thi
that the following ansatz for the topological distancer(p)
holds: the strong chaos transition always belongs to the
rected percolation universality class, while the weak ch
transition is always of first-order character. This statemen
equivalent to the assumption that the fraction of sites in
percolation cluster that do not belong to the difference cl
ter is either vanishing~strong chaos! or order 1~weak chaos!
in the thermodynamic limit. If noise is allowed to desynchr
nize the system, the directed percolation character is los

This ansatz can be illustrated by plotting the ratio betwe
the topological distancer(p) and the density of wet site
m(p) as shown in Fig. 3 for the logistic map ande51/3.
One can see that this ratio maintains almost constant u
the transition point. We have checked that this behav
holds for several values of the slopea and the couplinge for
the three maps.

It is interesting to examine the behavior of the differen
zi

t near the transition point. In the strong chaos phase,
value of the differencezi

t for nonsynchronized sites is large
since the synchronization is forced by the percolation mec

FIG. 3. The ratior(p)/m(p) vs p for a chain of 1000 logistic
maps,T53000, slopea54, ande51/3.
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nism. On the other hand, in the weak chaos phase, the v
of the differencezi

t for nonsynchronized sites is small o
average, even though localized bubbling of large amplitu
can be observed@17#.

In the following we study numerically the phase bounda
between the strong and weak chaos for the Bernoulli s
and the logistic and tent map, and we obtain some analy
approximation for it.

IV. PHASE DIAGRAMS

The boundary between the weakly and strongly cha
phases can be defined considering the synchroniza
mechanism on the critical percolation cluster, i.e., the clu
of wet sites atp* 5minps*5maxpw*512pc

~DP! . As illustrated
in Appendix A, the critical wet cluster is included in a
percolating wet clusters, so it can be considered to be
smallest percolating cluster of wet sites, and thus the
most unfavorable to the propagation of the difference, s
presenting spanning paths over which chaos can propa
The algorithm for the generation of the critical cluster is a
described in Appendix A.

The phase diagrams for the Bernoulli shift and the t
map are shown in Fig. 4; the logistic map never exhibits
strongly chaotic phase. The casee51/2 is special, since the
connectivity changes, and in this case the lattice correspo
to that of the Domany-Kinzel model@18#, for which 1
2pc

~DP!50.3.
Since this boundary phase is defined on a critical per

lation cluster, one can assume that the average expan
rate, given by the sum of all paths in the wet cluster,
dominated by a single path. Let us assume that this p
containsx vertical steps~of weight 122e) and y oblique
steps~of weighte). For the Bernoulli shift, all steps carry a
expansion ratea and thus one obtains for the Lyapunov mu
tiplier mc at the phase boundary

mc.ax1y~122e!xey.1

and thus

a* 5
const

~122e!a1ea2
,

with

a11a251. ~5!

Indeed, the numerical data presented in Fig. 4 do suppo
correspondence of this form. However, they are too roug
allow the precise computation of the exponents, which at
rate do not seem to always correspond to Eq.~5!.

We computed numerically the transition pointp* and the
critical exponentsb andn' for the topological distancer(p)
for the Bernoulli shift and the tent map by means of t
scaling relation

rS p,
1

t D5ab/n'
•rS a1/n'~p2p* !1p* ,

1

at D ~6!

that holds in the thermodynamic limitN→`. Herea is an
arbitrary time scaling factor. We foundpc50.460(2), b
lue
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50.26(1), andn'51.75(5). Theresults are consistent with
the hypothesis that the phenomenon belongs to the dire
percolation universality class, as expected.

The strong chaos transition is characterized by the
panding dynamics on the percolation cluster. Thus, in g
eral, at the transition point the value of a nonzero differen
zi

t is not small. On the contrary, the weak chaos transition
characterized by the average vanishing ofzi

t . Up to the
boundary between the two regimes, the distance fieldzi is
still small and a linear approximation can be used. The s
chronization mechanism is related to the average numbe
links between wet sites,k(p). Since the wetting is forced
~once a site has been wet, it cannot be ‘‘unwet’’!, one can
simply consider the process for a single site, obtain
k(p)53(12p).

By imposing that the distance should be marginally e
panding, and assuming that the difference fieldzi is almost
constant, we get for the Bernoulli shift ande51/3

1

3
aw* k~pw* !5aw* ~12pw* !51

FIG. 4. Percolative phase diagram for Bernoulli~a! and tent~b!
maps. The line represents a power-law fitting, as described in
text. Average over five runs,N5100,T54000.
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and thusaw* 51/(12pw* ).
For a generic map, with positive and negative slopes, c

cellation effects can be present. We need an indicator a
the constancy of the sign of the derivative over the inter
tion range of the diffusion operator. We consider the quan

h i5
f 8~xi !1 f 8~xi 11!

2
,

which is analogous to the local Lyapunov multiplier, and

h5S )
i 50

N21

h i D 1/N

as a global indicator. For the Bernoulli map this indica
corresponds to the slopea.

Thus, for e51/3, the condition for observing the wea
chaos synchronization transition is given in this approxim
tion by

1

3
hw* k~pw* !5hw* ~12pw* !51.

We report in Fig. 5 the behavior ofhw* (12pw* ) as a func-
tion of the slopea for Bernoulli shift and tent maps, togethe
with the mean-field approximation. The discrepancies fr
this approximation originate from the assumption of a u
formly vanishing difference fieldzi , which is not fulfilled
even at the transition point.

Let us turn now to the metric distancez. For random
maps even an infinitesimally small distance is amplified
one step to a random value. Thus, we have for the me
distance

z~ t !5^uzu&r~ t !,

andz has the same critical behavior ofr, denoting a certain
degree of universality in this synchronization transition.

We have studied the behavior of the ratioz(p)/r(p) as a
function of p for various values of the slopea for the Ber-
noulli shift and the tent map, ande51/3. The results, re-
ported in Fig. 6, show that for the Bernoulli shift the metr
distance is independent ofp and of slopea far from the
synchronization transition. Deviations from this behav
near the transition point vanish as the slopea become greate
thana* .

For the tent map the ratioz(p)/r(p) is independent ofp
far for the transition but it depends on the slopea which
determines the distribution ofzi . Again, fora@a* , the met-
ric distance is almost constant fromp also near the transition
point.

The caseeÞ1/3 is more difficult to analyze, since th
asymmetric couplings cannot be easily mapped onto a st
tical problem. However, for very smalle, the expansion is
dominated by the exponential growth~with average ratel)
along the vertical link of the largest difference. A very rou
mean-field description could be the following. Let us assu
that at a certain time there is essentially only one sitei with
a non-null differencezi . This difference grows exponentiall
at ratel and propagates to the neighboring sites at ratee.
After an average time 1/p the difference at sitei is set to zero
by the synchronization mechanism, and after time 2/p only
n-
ut
-
y

r

-

-

ic

r

is-

e

one of the neighboring sites has a nonzero difference, t
closing the cycle. Therefore, the average expansion rat
the synchronization thresholdpc is

e exp~2l/pc!.const, ~7!

wherel is the Lyapunov exponent of the uncoupled ma
and we have neglected nonexponential prefactors. In Fi
we show the results of one simulation for the three ma
studied in the paper, with the parameters chosen so a
havel5 ln(2), and for Bernoulli maps with various slope
One can see that Eq.~7! is verified for smalle, except finite
size and time effects.

V. CONCLUSIONS

We have studied the synchronization transition betwe
two chains of diffusively coupled chaotic maps, induced
the inactivation of degrees of freedom in the difference sp
with a probabilityp. We have found that two different re
gimes can be defined: the strong chaos regime for which
dynamics of the transition is dominated by the directed p

FIG. 5. The relation between the slopea and the weak chaos
synchronization thresholdhw* /(12pw* ) for a chain of Bernoulli
shift ~a! and tent maps~b!. Average over four runs,N5400, T
58000, ande51/3.
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PRE 59 415SYNCHRONIZATION AND DIRECTED PERCOLATION IN . . .
colation transition, and a weak chaos regime in which
system synchronizes in the presence of spanning paths a
which the difference could in principle survive. We ha
been able to present some analytical approximation of
transition point and its critical properties.

The character of the transition and the critical value of
parameterp are proposed as indicators of spatial propagat
of chaoticity, which can complement the usual Lyapun
description. These indicators do not rely on the existence
a tangent space or exponential growth, so they can be ap
to a broader class of systems, such as nondifferentiable m
or cellular automata@13#, and a system presenting stab
chaos@19#.

Our approach can be considered as the annealed ve
of models that exhibit a synchronization transition, presen
in some recent papers. First of all, let us consider the s
chronization mechanism proposed by Pecora and Carroll@1#.
In their numerical and experimental setup they studied
behavior of the distance between two chaotic oscillato
when part of the degrees of freedom of one of them is

FIG. 6. The dependence of the ratio between the metric dista
z(p) and the topological distancer(p) as a function ofp, for the
Bernoulli shift ~a! and tent map~b! and different slopesa. Average
over four runs,N5100, T51000. All curves normalized to 1 fo
p50.
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equal to the corresponding degrees of freedom of the ot
Extending this mechanism to spatially extended systems,
has a coupling similar to ours, but with quenched disor
~the coupling degrees of freedom!. We did not perform the
study of quenched disorder in diffusively coupled map
since it implies longer spatial couplings in order to avoid t
formation of walls.

Another similar system was studied by Fahy and Ha
mann@20#. Their subject was an ensemble of noninteract
particles in a chaotic potential. At fixed time intervals th
velocities of the particles were all set equal to a Gauss
sample. If the free-fly time is small enough, all trajectori
collapse into one. We performed preliminary simulatio
~not reported here! on a modified system, in which one re
erence particle followed an unperturbed trajectory, while

ce FIG. 7. Relation between a small couplinge and the synchroni-
zation thresholdpw* . ~a! The three sets correspond to the Bernou
shift with slopea52 ~stars!, tent map with slopea52 ~diamonds!,
and logistic maps witha54 ~squares!. For all three maps the maxi
mum Lyapunov exponent fore50 is l5 ln(2); the dashed line
corresponds to the law 1/pw* 5 ln(e)/@2ln(2)#. ~b! Bernoulli shift for
a52 ~circle!, a53 ~triangles!, anda54 ~squares!; the dashed lines
have slope 1/@2ln(a)#. Data from one simulation withN5500 and
T52000.
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replica had its velocity set equal to that of the reference
time intervalst. Indeed, we observed a synchronization tra
sition for small enought. By observing the system strobo
scopically at intervalst, we can substitute the continuou
dynamics with a map. In this case the timet controls the
chaoticity of the map, while the synchronization mechani
is similar to that of Pecora and Carroll and thus to
quenched disorder. Fahy and Hammann also checked tha
synchronization transition occurs if the position of the p
ticles is set equal, instead of the velocity.

The synchronization mechanism studied in this pape
quite particular, since it implies a complete collapse of
distance between the master and the slave. The strong c
synchronized phase is not stable with respect to the inclu
of desynchronizing effects, such as noise or nonperfect id
tity of parameters in the master and slave systems. On
other hand, the weak chaos transition is ruled by the ex
nential shrinking of difference, i.e., by negative Lyapun
exponents for the difference. Thus, it is expected that
transition is robust with respect to weak desynchronizat
effects, and does not depend on the thresholdt. The modi-
fication of the observed phenomena in the presence of n
will be the subject of a future work. In the present versio
the synchronization transition can be considered as a m
ematical tool for the definition of quantities related to t
spatial propagation of chaoticity. The most natural syste
to which this method can be applied are those presen
stable chaos@19#, i.e., irregular behavior in the presence
negative Lyapunov spectra. For these systems an eve
small noise is wiped out by the contracting dynamics
small scales. Similar noise-free systems are those that ca
approximated by cellular automata models@13#.
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APPENDIX

The generation of the critical cluster can be done in a v
efficient way, using a modification of the invasion perco
tion algorithm @21#. The random bitr i

t(p) is obtained by
comparing a random numberRi

t , whose distribution prob-
ability is constant in the unit interval, withp. If Ri

t,p, then
r i

t51, otherwiser i
t50.

Let us consider a lattice with the same geometry of
percolation one and assign to each site a random numbeRi

t .
The idea now is that of loweringp ~starting fromp51) until
the cluster ofr i

t50 sites spans the lattice. A nice property
the directed site percolation problem~which is related to the
‘‘forcing’’ character of wetting! is that, given the random
numberRi

t , the percolation cluster forp1 is included in the
percolation cluster forp2 if p1.p2. Thus, one has simply to
choose the site with the highestRi

t on the border of the per
colation cluster~i.e., among the sites withr i

t51 connected to
some r j

t2150 site, with u i 2 j u51). This maximum value
will become the new estimate ofp, and the percolation clus
ter is enhanced to include all sites withRi

t.p.
This procedure can be easily performed by keeping

values of the sites in the border in an ordered linked l
assuming that all sites in thet50 row are connected to a we
site.
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